
Linear Algebra & Geometry
LECTURE 12

• Inverse matrix

• Linear mappings



Theorem. (determinant versus not-quite-matrix-addition)

Suppose s ∈ {1,2,… , n} and 𝐴[𝑖, 𝑗] = 𝐵[𝑖, 𝑗] = 𝐶[𝑖, 𝑗] for every i,j
such that 𝑗 ≠ 𝑠 and 𝐶[𝑖, 𝑠] = 𝐴[𝑖, 𝑠] + 𝐵[𝑖, 𝑠]. Then det(𝐶) =
det(𝐴) + det(𝐵).

Proof..

det 

c1,1 … a1,𝑠 + 𝑏1,𝑠 … c1,𝑛
c2,1 … a2,𝑠 + 𝑏2,𝑠 … c2,𝑛
⋮ ⋮ ⋮ ⋮ ⋮

c𝑛,1 … a𝑚,𝑠 + 𝑏𝑛,𝑠 … c𝑛,𝑛

=

σ𝑖=1
𝑛 −1 𝑖+𝑠(𝑎𝑖,𝑠+𝑏𝑖,𝑠) det(𝐶𝑖,𝑠) = σ𝑖=1

𝑛 −1 𝑖+𝑠𝑎𝑖,𝑠 det(𝐶𝑖,𝑠) +

σ𝑖=1
𝑛 −1 𝑖+𝑠𝑏𝑖,𝑠 det(𝐶𝑖,𝑠) = det(𝐴) + det(𝐵).

Warning. This is NOT about determinant of the sum of two matrices 

being equal to the sum of their determinants; that is not true. This is 

about determinant of a matrix whose ONE column is the sum of two 

vectors.

By Laplace 
expansion 
on column s



Theorem. (other properties of det)

For every nn matrices 𝐴 and 𝐵

1. det(𝐴) ≠ 0 iff 𝑟(𝐴) = 𝑛, in other words, rows of A are 
linearly independent

2. If for every i,j such that i > j 𝑎𝑖,𝑗 = 0 (only 0's below the main 

diagonal, triangular matrix) then det(𝐴) = 𝑎1,1𝑎2,2…𝑎𝑛,𝑛

3. In particular, det(𝐼𝑛,𝑛) = 1

4. det(𝐴𝐵) = det(𝐴) det(𝐵)

Proof. Omitted.

Part 2 suggests a strategy for calculation of determinants of large 
matrices: row-reduce the matrix to a triangular form.



Determinant and systems of linear equations

Theorem. (Uniqueness theorem)

A system of n linear equations with n unknowns

(∗)

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1
𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2

. . .
𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + …+ 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛

has a unique solution iff det(𝐴) ≠ 0

Proof.

It follows from the fact that the corresponding homogeneous 
system has unique solution Θ iff rank(𝐴)=n which, in turn is 
equivalent to det(𝐴)≠ 0. Then, if (and that's a big IF) v0 is a 
solution then all solutions v of (∗) look like v = Θ + v0 = v0.



Warning.

The uniqueness theorem is a "both ways" implication but is often 
misunderstood. The conclusion should be understood as "the set of 
solutions of (∗) has exactly one element". Hence the negation of 
this is (contrary to what many people believe) not

"if det 𝐴 = 0 then (∗) has no solutions"

but rather (remember de Morgan's Law!)

"if det 𝐴 = 0 then (∗) the set of solutions of (∗) does not have 
exactly one element"

which means either zero or more than one element. Look at this:

ቊ
𝑥 + 𝑦 = 2
2𝑥 + 2𝑦 = 4

det
1 2
2 4

= 4−4 = 0 but the system has infinitely 

many solutions of the form 𝑡, 2 − 𝑡 where t is any real number.



Theorem. (Cramer's Rule)
Let 𝐴 be an nn matrix with det(𝐴)≠ 0 and let 𝐵 be any n1 
matrix. Then the system of equations 𝐴𝑋 = 𝐵 has unique 
solution 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛 ]T and for each 𝑖 = 1,2,… , 𝑛

𝑥𝑖 =
𝑑𝑒𝑡𝐴𝑖

𝑑𝑒𝑡𝐴
, 

where 𝐴𝑖 is obtained by replacing the 𝑖-th column of 𝐴 with 𝐵.
Proof (skipped).



Example.

ቐ

2x + 4y − z = 11

−4x − 3y + 3z = − 20
2x + 4y+2z = 2

|A| = 

2 4 −1
−4 −3 3
2 4 2

= −12+16+24 −6 −24+32=30,

|𝐴1| = 
11 4 −1
−20 −3 3
2 4 2

= −66+80+24 −6 −132+160=264 − 204 = 60, x = 2

|𝐴2| = 

2 11 −1
−4 −20 3
2 2 2

= −80+8+66 −40 −12+88 = 162−132 = 30, y = 1

|𝐴3| = 
2 4 11
−4 −3 −20
2 4 2

= −12−160−176+66+160+32 = 258−348 = −90, z = −3



Definition. (Inverse matrix)
Let 𝐴 be an nn matrix. If there exists a matrix 𝐴−1 such that 

𝐴𝐴−1= 𝐴−1𝐴 = 𝐼 then 𝐴−1 is called the inverse (matrix) of 𝐴.

Fact. The inverse matrix for A, if it exists, is unique.

This follows from the very general fact the in every associative 
algebra the inverse element, if there is one, is unique. 



Theorem.
A matrix is 𝐴 invertible iff det 𝐴 ≠ 0.

Proof.(⇒)

If 𝐴−1 exists, then det 𝐴𝐴−1 = det 𝐼 = 1 = det 𝐴 det(𝐴−1)
hence both det 𝐴 and det(𝐴−1) are different from zero.

(⇐)

If det 𝐴 ≠ 0 then, from the uniqueness theorem for nn systems 

of equations, for every n1 matrix B there exists a (unique) 

solution of the system 𝐴𝑋 = 𝐵. Replacing B with consecutive 

columns of the identity matrix I we get the existence of the 

corresponding columns of the inverse matrix which in turn 

proves the existence of the inverse matrix itself.



To  be more specific:

𝐴−1 = X = 

x1,1 x1,2 … x1,𝑛
x2,1 x2,2 … x2,𝑛
⋮ ⋮ … ⋮

x𝑛,1 x𝑛,2 … x𝑛,𝑛

A =

a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑛,1 a𝑛,2 … a𝑛,𝑛

1 0 … 0
0 1 … 0
⋮ ⋮ … ⋮
0 0 … 1

= I

Consider

a1,1 a1,2 … a1,𝑛
a2,1 a2,2 … a2,𝑛
⋮ ⋮ … ⋮

a𝑛,1 a𝑛,2 … a𝑛,𝑛

x1,1
x2,1
⋮

x𝑛,1

=

1
0
⋮
0

. The system is 

uniquely solvable and the solution, 𝑋1 is the first column of 𝐴−1. 

The same can be said about the second, third and each next 

column of X and I. QED



The proof provides a method (two methods, really) for 
calculating 𝐴−1 (that’s one reason I insist on doing proofs):

Method 1.

Row-reduce the following matrix to a row-canonical one

[𝐴|𝐼] = 

𝑎1,1 𝑎1,2 … 𝑎1,𝑛 1 0 … 0

𝑎2,1 𝑎2,2 … 𝑎2,𝑛 0 1 … 0

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛 0 0 … 1

~ …~… ~ …~

~…~

1 0 … 0 𝑥1,1 𝑥1,2 … 𝑥1,𝑛
0 1 … 0 𝑥2,1 𝑥2,2 … 𝑥2,𝑛
⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
0 0 … 1 𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑛

= [𝐼|𝐴−1]

This is always possible if A is invertible. It proves that 𝐴 is 

invertible iff it may be row-reduced to the identity matrix 𝐼.



Method 2.

Using Cramer's rule to calculate each 𝑥𝑖,𝑗 of 𝐴−1.

This method involves calculation of det(𝐴) and 𝑛2 determinants 

of the size (𝑛 − 1) × (𝑛 − 1). For large matrices it takes forever. 

𝑥𝑖,𝑗 appears in j-th column of 𝐴−1 which means must consider  

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛

𝑥1,𝑗
⋮
𝑥𝑖,𝑗
⋮

𝑥𝑛,𝑗

=

0
⋮
1
⋮
0

= Ij where the solitary 1 in 𝐼𝑗

is in the j-th position. So, in order to find the i-th unknown we 

need divide the determinant of 𝐴𝑖,𝑗
∗ (𝐴 with i-th column replaced 

by 𝐼𝑗) by det(𝐴).



𝑑𝑒𝑡𝐴𝑖,𝑗
∗ = 𝑑𝑒𝑡

a1,1 … 0 … a1,𝑛
⋮ ⋮ ⋮
a𝑗,1 … 1 … a𝑗,𝑛
⋮ ⋮ … ⋮

a𝑛,1 0 … a𝑛,𝑛
If you do this determinant by i-th column, the only nonzero term 

in the Laplace expansion will be −1 𝑖+𝑗 times the determinant 

obtained by the removal of j-th row and i-th column from 𝐴𝑖,𝑗
∗ . 

Here is the funny thing: 𝐴 and 𝐴𝑖,𝑗
∗ only differ on the i-th column, 

which is being removed. Hence 𝑑𝑒𝑡𝐴𝑖,𝑗
∗ = −1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑗,𝑖 and, 

finally, 𝑥𝑖,𝑗 =
−1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑗,𝑖

𝑑𝑒𝑡𝐴
. In other words

𝐴−1 =
1

𝑑𝑒𝑡𝐴
−1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑖,𝑗

𝑇

in j-th row and i-th
column of 𝐴𝑖,𝑗

∗



Example.

𝐴 =

0 2 1 1
1 1 2 0
2 1 0 0
1 3 4 1

. Find 𝐴−1.

Method 1. (Gauss elimination). Notice and remember the strategy used:

Step one: get number 1 in the upper left corner 

0 2 1 1 1 0 0 0
1 1 2 0 0 1 0 0
2 1 0 0 0 0 1 0
1 3 4 1 0 0 0 1

~ 𝒓𝟒 − 𝒓𝟐, −𝒓𝟑 + 𝟐𝒓𝟐

0 2 1 1 1 0 0 0
1 1 2 0 0 1 0 0
0 1 4 0 0 2 −1 0
0 2 2 1 0 −1 0 1

~

𝒓𝟏 − 𝟐𝒓𝟑, 𝒓𝟐 − 𝒓𝟑, 𝒓𝟒 − 𝟐𝒓𝟑

0 0 −7 1 1 −4 2 0
1 0 −2 0 0 −1 1 0
0 1 4 0 0 2 −1 0
0 0 −6 1 0 −5 2 1

−𝒓𝟏 + 𝒓𝟒

0 0 1 0 −1 −1 0 0
1 0 −2 0 0 −1 1 0
0 1 4 0 0 2 −1 0
0 0 −6 1 0 −5 2 1

A-1



Method 2. (Cramer's Rule, cofactors)

det 𝐴 = 1. We are cheating here; this is based on method 1. Only 
two transformations in the previous slide affected the determinant, 
in both cases they were like −𝑟𝑠 + 𝑐𝑟𝑡 which really means two 
operations: scale rs by (-1) and add to the new rs another row 
(perhaps scaled by some factor). Scaling a row by (-1) changes the 
sign of the determinant and we did it twice.

Let's calculate just a single entry of 𝐴−1, say 𝐴−1(2,3). According 

to the cofactor theorem 𝐴−1(2,3) = 
1

𝑑𝑒𝑡𝐴
−1 2+3det(𝐴3,2)

det(𝐴3,2) = 

0 2 1 1
1 1 2 0
2 1 0 0
1 3 4 1

= 
0 1 1
1 2 0
1 4 1

= 4 − 2 − 1 = 1, which 

means 𝐴−1[2,3] should be −1. We move back one slide and … 

surprise, surprise! it checks. Now you must calculate the remaining 

15 entries of  𝐴−1!



Linear Mappings

Definition. 

Let 𝑉 and 𝑊 be vector spaces over a field 𝔽 . A function 𝜙: 𝑉 → 𝑊
is called a linear mapping iff 

(a) (∀𝑢, 𝑣 ∈ 𝑉) 𝜙(𝑢 + 𝑣) = 𝜙(𝑢) + 𝜙(𝑣), 
(b) (∀𝑣 ∈ 𝑉)(∀𝑝 ∈ 𝔽) 𝜙(𝑝𝑣) = 𝑝𝜙(𝑣).

Proposition. 

A function 𝜙: 𝑉 → 𝑊 is a linear mapping iff 

(c) (∀𝑞, 𝑝 ∈ 𝔽) (∀𝑢, 𝑣 ∈ 𝑉) 𝜙(𝑞𝑢 + 𝑝𝑣) = 𝑞𝜙(𝑢) + 𝑝𝜙(𝑣).

Proof. (⇒) Suppose 𝜙 is a linear mapping. Then 𝜙 𝑞𝑢 + 𝑝𝑣 =
𝜙(𝑞𝑢) + 𝜙(𝑝𝑣) = 𝑞𝜙(𝑢) + 𝑝𝜙(𝑣), by (a) and (b). 

(⇐) To prove (a), we put 𝑝 = 𝑞 = 1 in (c) and to prove (b) we put 

𝑞 = 0. Then 𝜙 𝑝𝑣 = 𝜙 Θ + 𝑝𝑣 = 𝜙 0𝑢 + 𝑝𝑣 = 0𝜙 𝑢 +
𝑝𝜙 𝑣 = Θ + 𝑝𝜙(𝑣) = 𝑝𝜙(𝑣). QED



Example 1. 𝑉 = 𝑊 = ℝ𝑛[𝑥], 𝜙(𝑓(𝑥)) = 𝑓 ’(𝑥). Differentiation of 

polynomials is obviously a linear mapping. Clearly, we can extend 

this observation to any space of differentiable functions.

Example 2. 𝜙: ℝ3 → ℝ4, 𝜙(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 2𝑥 − 𝑧, 𝑥 + 𝑦 +
𝑧, 𝑦). We have 𝜙((𝑥, 𝑦, 𝑧) + (𝑎, 𝑏, 𝑐)) = 𝜙(𝑥 + 𝑎, 𝑦 + 𝑏, 𝑧 +
𝑐) = ((𝑥 + 𝑎) + (𝑦 + 𝑏), 2(𝑥 + 𝑎) − (𝑧 + 𝑐), (𝑥 + 𝑎) + (𝑦 +
𝑏) + (𝑧 + 𝑐), (𝑦 + 𝑏)) = (𝑥 + 𝑦 + 𝑎 + 𝑏, 2𝑥 − 𝑧 + 2𝑎 − 𝑐, 𝑥 +
𝑦 + 𝑧 + 𝑎 + 𝑏 + 𝑐, 𝑦 + 𝑏) = 𝜙(𝑥, 𝑦, 𝑧) + 𝜙(𝑎, 𝑏, 𝑐) and 

𝜙(𝑝(𝑥, 𝑦, 𝑧)) = 𝜙(𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑝𝑥 + 𝑝𝑦, 2𝑝𝑥 − 𝑝𝑧, 𝑝𝑥 +
𝑝𝑦 + 𝑝𝑧, 𝑝𝑦) = = (𝑝(𝑥 + 𝑦), 𝑝(2𝑥 − 𝑧), 𝑝(𝑥 + 𝑦 + 𝑧), 𝑝𝑦) =
𝑝𝜙(𝑥, 𝑦, 𝑧). Hence ϕ is a linear mapping. 



Example 3.

𝜙: ℝ3 → ℝ2 , 𝜙(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 − 1, 𝑥 − 𝑧). 𝜙 is NOT a linear 

mapping as 𝜙(Θ + Θ) = 𝜙(Θ) = 𝜙(0,0,0) = (0 + 0 − 1,0 −
0) = (−1,0), while 𝜙(Θ) + 𝜙(Θ) = (−1,0) + (−1,0) =
(−2,0). This is enough to show that ϕ is not linear. Let us note that 

𝜙 does not satisfy the second condition either, as 𝜙(2Θ) = 𝜙(Θ) =
(−1,0) and 2𝜙(Θ) = 2(−1,0) = (−2,0).
We will now define two important parameters of a linear mapping, 

rank and nullity. 


